Functional Profiles of Visual-, Auditory-, and Water Flow-Responsive Neurons in the Zebrafish Tectum
نویسندگان
چکیده
The tectum has long been known as a hub of visual processing, and recent studies have elucidated many of the circuit-level mechanisms by which tectal neurons filter visual information. Here, we use population-scale imaging of tectal neurons expressing a genetically encoded calcium indicator to characterize tectal responses to non-visual stimuli in zebrafish. We identify ensembles of neurons responsive to stimuli for each of three sensory modalities: vision, audition, and water flow sensation. These ensembles display consistently represented response profiles to our stimuli, and each has a preferred stimulus and salient feature to which it is most responsive. Each sensory modality drives a unique spatial profile of activity in the tectal neuropil, suggesting that the neuropil's laminar structure functionally subserves multiple modalities. The positions of the responsive neurons in the periventricular layer are also distinct across modalities, and very few neurons are responsive to multiple modalities. The cells contributing to each ensemble are highly variable from trial to trial, but ensembles contain "cores" of reliably responsive cells, suggesting a mechanism whereby they could maintain consistency in reporting salient stimulus features while retaining flexibility to report on similar stimuli. Finally, we find that co-presentation of auditory or water flow stimuli suppress visual responses in the tectum.
منابع مشابه
Characterisation of sensitivity and orientation tuning for visually responsive ensembles in the zebrafish tectum
Sensory coding relies on ensembles of co-active neurons, but these ensembles change from trial to trial of the same stimulus. This is due in part to wide variability in the responsiveness of neurons within these ensembles, with some neurons responding regularly to a stimulus while others respond inconsistently. The specific functional properties that cause neurons to respond more or less consis...
متن کاملThe dorsal raphe modulates sensory responsiveness during arousal in zebrafish.
During waking behavior, animals adapt their state of arousal in response to environmental pressures. Sensory processing is regulated in aroused states, and several lines of evidence imply that this is mediated at least partly by the serotonergic system. However, there is little information directly showing that serotonergic function is required for state-dependent modulation of sensory processi...
متن کاملFunctional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum
The visual pathway from the retina to the optic tectum in fish and frogs has long been studied as a model for neural circuit formation. Although morphological aspects, such as axonal and dendritic arborization, have been well characterized, less is known about how this translates into functional properties of tectal neurons during development. We developed a system to provide controlled visual ...
متن کاملMonitoring of Single-Cell Responses in the Optic Tectum of Adult Zebrafish with Dextran-Coupled Calcium Dyes Delivered via Local Electroporation
The zebrafish (Danio rerio) has become one of the major animal models for in vivo examination of sensory and neuronal computation. Similar to Xenopus tadpoles neural activity in the optic tectum, the major region controlling visually guided behavior, can be examined in zebrafish larvae by optical imaging. Prerequisites of these approaches are usually the transparency of larvae up to a certain a...
متن کاملHypothalamic Projections to the Optic Tectum in Larval Zebrafish
The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016